RhD typing Challenges

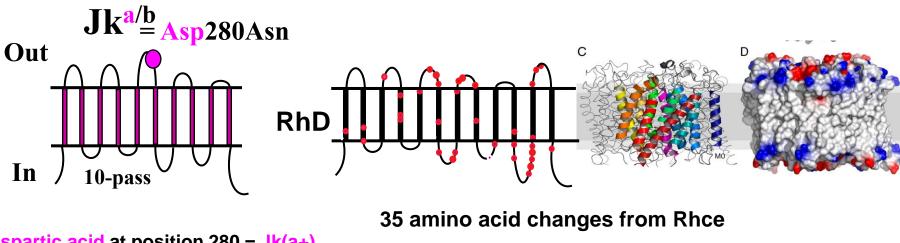
Advancing Clinical Practice with RHD genotyping

Who needs Rh negative blood and Rh immune globulin ?

Dr. Connie M. Westhoff, SBB, PhD Director, Immunohematology and Genomics New York Blood Center / Kansas City Community Blood Bank

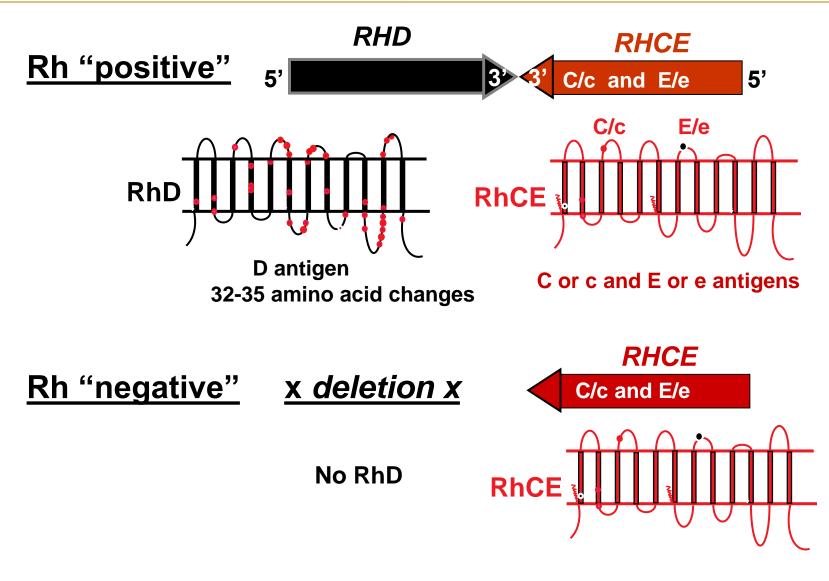
Adjunct Assistant Professor University of Pennsylvania, Department of Laboratory Medicine, Division of Transfusion Medicine

Why is typing for RhD sometimes problematic?

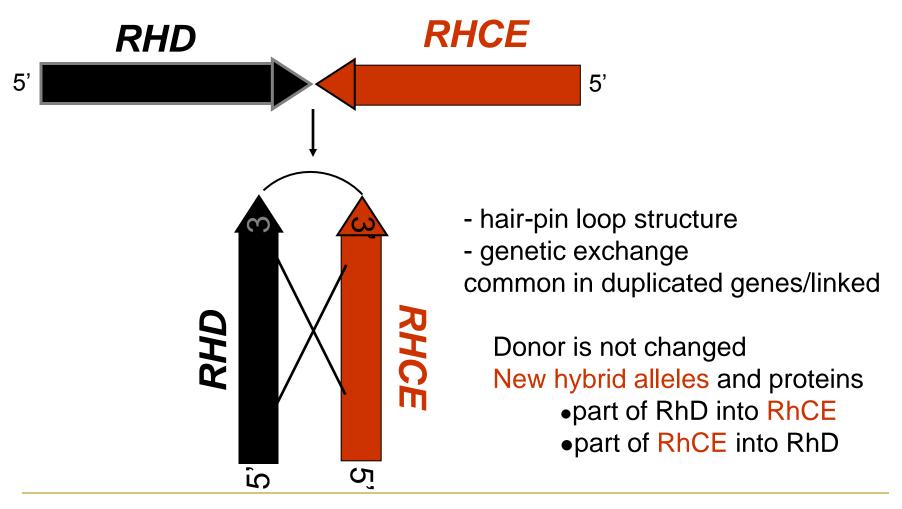

- Large number of variables
 - Variation in D strength of antigen expression on some RBCs
 - Variation in test methods
 - Variation in the specificity of antibody clones and reagent formulations

– Variation in interpretation

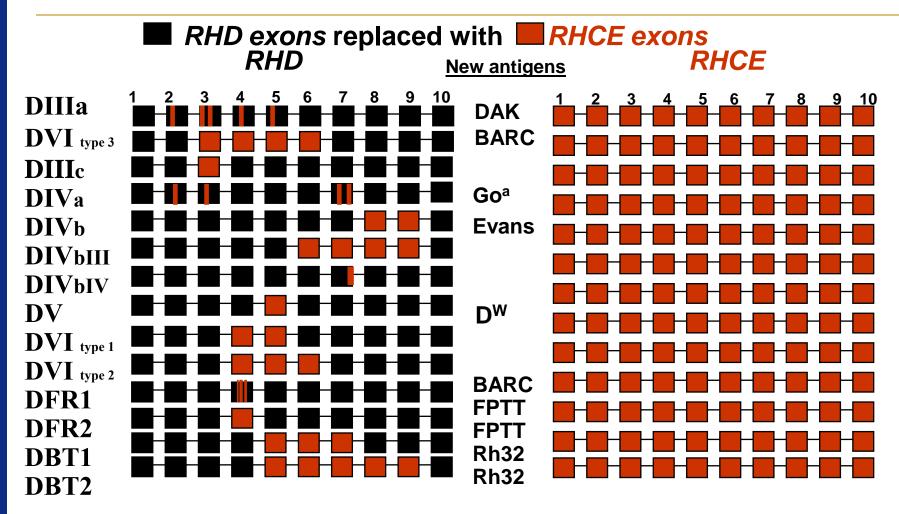
Why is typing for RhD sometimes problematic?


- The D antigen is NOT a single epitope on a red cell protein, unlike for example, Jka/b
- D typing detects the presence or absence of a entire red cell protein

Example: Most blood group antigens are single change


Aspartic acid at position 280 = Jk(a+) Asparagine at position 280 = Jk(b+)

RH Blood Group Locus – 2 Genes



RH LOCUS

Gene conversion and rearrangement

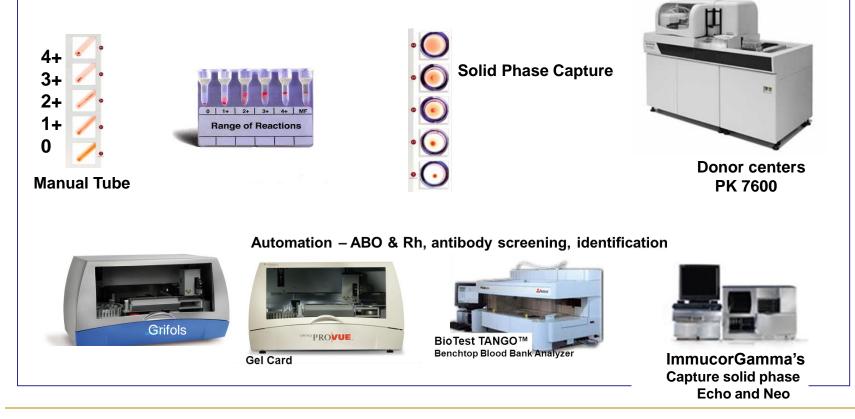
Partial D examples: RHD/RHCE hybrid alleles

Many type as D+ but patients can make anti-D Partial DVI – associated with majority of cases of fatal HDFN (Caucasians) Females (under age of 50) should receive Rh- blood; are RhIG candidates

I. Variation in D antigen expressed on RBCs

- More than 200 different RHD alleles in populations
 - single or multiple amino acid changes in RhD
 - could potentially be >200 different antigens or "D subgroups"
- Two Primary Categories
 - Weak D
 - changes decrease antigen expression level
 - definition: react weaker than expected ($\leq 2+$ OR require IAT)
 - Not at risk for anti-D (rare exceptions, but no HDFN or HTR)
 - weak D types 1, 2, 3 most common
 - Partial D
 - changes alter the epitopes or epitopes are missing
 - At risk for clinically significant anti-D

Cannot be distinguished by routine serologic D typing


How many patients have altered *RHD* gene?

- 0.5%- as many as 4% of patients carry *RHD* genes with mutation(s)
 - incidence depends on ethnic group
- ~25% of sites in CAP survey reported they had seen at least one patient in the past 12 months with a serologic weak D phenotype who made alloanti-D
- Literature: >30 reports of D+ persons, presumed to have partial D, who made anti-D associated with HDFN

Sandler SG, Roseff S, Domen RE, et al. Policies and procedures related to testing for weak D phenotypes and administration of Rh immune globulin: results and recommendations related to supplemental questions in the Comprehensive Transfusion Medicine survey of the College of American Pathologists. *Arch Pathol Lab Med 2014;138:620-5*.

II. Variation in Test Methods to type for D

- Manual tube with or without IAT (AHG) for serologic weak D
- Gel card
- Solid phase
- PK enzyme treated cells for donor testing

▲ New York Blood Center

II. Variation in Test Methods to type for D

Donors

- Goal: prevent anti-D by detecting any D expression as positive
- AABB requires "method designed to detect weak expression of D"
 - U.S. use of enzyme treated cells and two anti-D (PK instrument)
 - OR use of indirect antiglobulin test (IAT)
- Patients
 - Goal: to prevent anti-D alloimmunization
 - AABB "testing for weak D expression by IAT not required/optional"
 - exception: newborns when evaluating D- mothers for RhIG

II. Variation in Test Methods to type for D

Donors

- AABB requires "method designed to detect weak expression of D"
- Patients
 - AABB "testing for weak D expression by IAT not required/optional"

Why differ?

- Patients

some partial D are only detected in the IAT

- females and OB's "may be better served as Rh negative"
- Partial DVI only detected by IAT
- **concern for "false positive"** (RBCs with +DAT, rouleaux, etc)

CAP survey: majority of hospitals do not do IAT for weak D for patients

History of anti-D typing in U.S.

Long recognized that donor and patient typing goals may differ

- Donor: need more sensitive testing to avoid stimulating anti-D
- Patient: no harm in treating patient as Rh negative

1960-70's Polyclonal anti-D reagents (detect multiple epitopes)

- Peter Issitt "tradition in blood banking demands that before a donor can be regarded as Rh negative he/she be shown not only to lack D antigen, but also C and E"
- based on fact that weak D antigen expression is often inherited with C+ or E+
- anti-CDE reagent was in wide use for donor testing

1980's - Monoclonal anti-D reagents

- Increased sensitivity IgM clones many RBCs D+ at IAT now reactive initial spin
- Could select clones to specific D epitopes
- Proposed different reagents: one for typing donors; one for patients
 - Too confusing
 - FDA: anti-D reagents for U.S. market MUST be non-reactive with DVI on initial testing (so these patients type as Rh negative)
 - Must react with DVI on IAT (so donors type as Rh positive)

III. Variation in FDA licensed anti-D reagents

Reagent	IgM monoclonal	IgG
Gammaclone	GAMA401	F8D8 monoclonal
Immucor Series 4	MS201	MS26 monoclonal
Immucor Series 5	Th28	MS26 monoclonal
Ortho BioClone	MAD2	Polyclonal
Ortho Gel	MS201	
(ID-MTS) Bio Rad RH1	BS226	
Bio Rad RH1 Blend	BS232	BS221, H41 11B7
Alba Bioscience alpha	LDM1	
Alba Bioscience beta	LDM3	
Alba Bioscience delta	LDM1/ESD1M	
Alba blend	LDM3	ESD1

- majority contain different clones
- often differ in reactivity with RBCs with partial D or weak D
- even the same clone can react differently
 - different potentiators are added
- reactivity with anti-D may differ depending on C or E status of the RBCs

III. Variation in FDA licensed anti-D reagents

		1
Reagent	IgM monoclonal	lgG
Gammaclone	GAMA401	F8D8 monoclonal
Immucor Series 4	MS201	MS26 monoclonal
Immucor Series 5	Th28	MS26 monoclonal
Ortho BioClone	MAD2	Polyclonal
Ortho Gel	MS201	_
(ID-MTS)		
Bio Rad RH1	BS226	
Bio Rad RH1 Blend	BS232	BS221, H41 11B7
Alba Bioscience alpha	LDM1	
Alba Bioscience beta	LDM3	
Alba Bioscience delta	LDM1/ESD1M	
Alba blend	LDM3	ESD1

Alba delta:

FDA – this reagent for donor testing only detects partial DVI at initial spin

"is not recommended for patient testing for transfusion"

III. Variation in FDA licensed anti-D reagents

Manufacturer instructions & cautions vary

EXAMPLES:

 "Reactions less than 2+ should be evaluated since they may be false positive"

- "Agglutination <1+ at IS should be tested using alternative reagent by IAT prior to final determination"
- "Patients should not be classified as D+ on basis of a weak reaction with a single anti-D"
- "If a clear positive not obtained it is safer to classify the patient as D-"

IV. Variation in interpretation and practice

2014 CAP Survey of ~3,100 laboratories

- Reporting (1992 D^u was renamed weak D and should no longer be used)
 - 47% as D positive
 - 11 % as D negative
- 30% as "weak D"
- females or OB's as D negative

- Treatment
 - D positive
 - Rh positive blood and no RhIG
 - risk for anti-D

D negative

- conservative approach; avoids risk for anti-D
- females- avoid risk for possible HDFN
- results in excess use of Rh negative blood
- results in excess use of Rh immune globulin

RHD genotyping (DNA testing) can distinguish

Weak D alleles

- Types 1-76 (76 different point mutations)
- Weak D type 1, 2, or 3 most common in Caucasian (~95%)
 - ARE NOT AT RISK

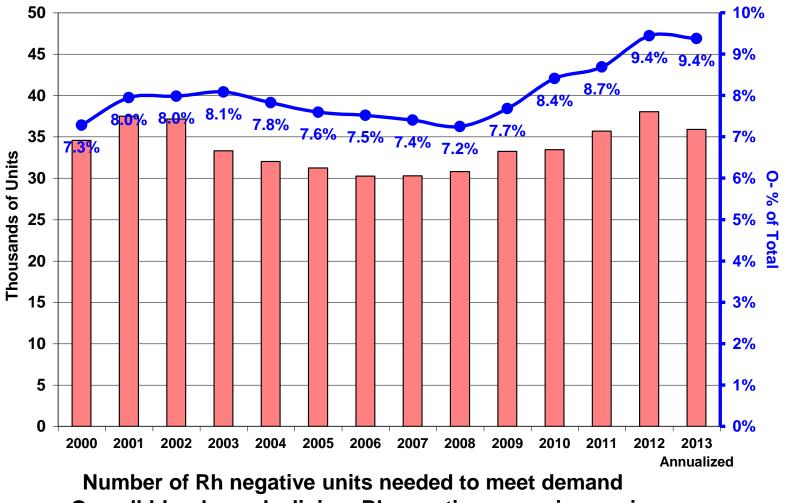
Partial D alleles

- >100 alleles with multiple changes
- appear to lack epitopes
 - AT RISK

Weak D alleles more common in Caucasians Partial D alleles more common in African-Americans

2014 Charge to Rh workgroup

Members: CAP, AABB, ACOG, ABC and ARC


- Develop a recommendation for RHD genotyping when a serological weak D phenotype is identified
- Goal: to begin phase-in the use of *RHD* genotyping

• A recommendation should help

- clarify clinical issues related to RhD blood typing in pregnant women and transfusion recipients
- while helping to avoid the unnecessary use of Rh immune globulin and transfusion of Rh-negative Red Blood Cells

Impact on the Blood Supply

O- RBC/WB Distribution

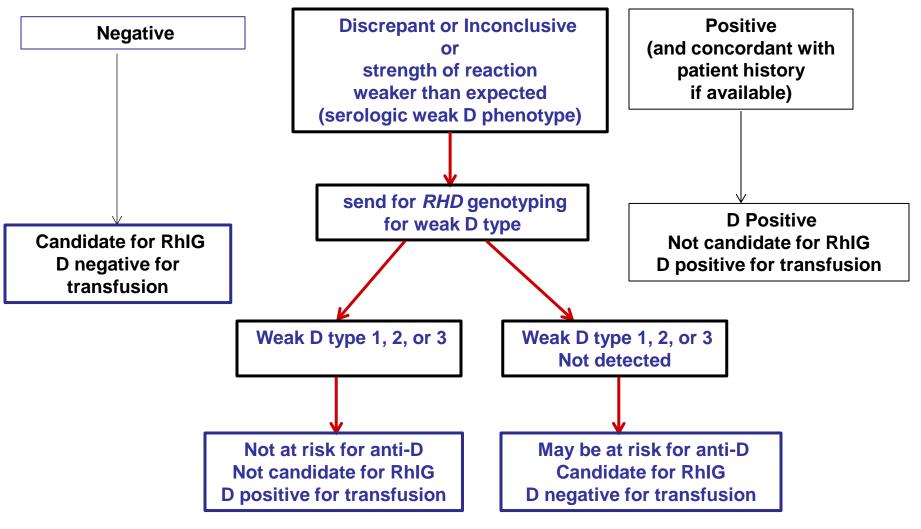
Overall blood use declining, Rh negative usage increasing

▲ New York Blood Center

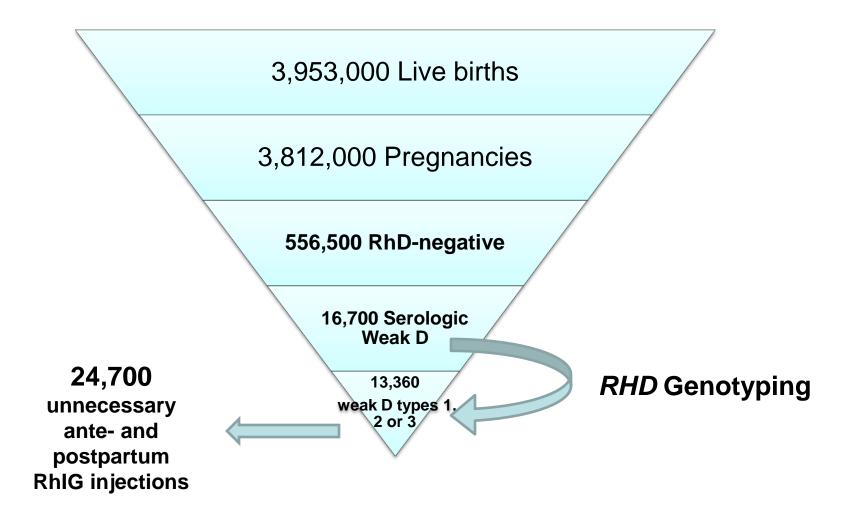
Brigham and Women's RHD genotyping for OB's

- To guide RhIG prophylaxis and selection of blood for transfusion
 - OB women with D typing discrepancies
 - positive previously and now negative: or the reverse
 - Rh type from physician office different than hospital
 - D typing weaker than expected

RHD∗	weak D type 1	weak D type 2	weak D type 3	weak D type 4.0	Partial DAR	No RHD RHCE*ceCF	New alleles	Total
# OB patients	16	9	2	2	4	1	2	36
% of total tested	44%	25%	5.5%	5.5%	11%	2.8%	5.5%	100%
Risk for anti-D		NO		Majority not at risk	YES	YES	UNKNOWN	
RhIG	Not candidate for RhIG				Candidate for RhIG	Candidate for RhIG	Candidate for RhIG	
	75 %				25	%		•


Patients are managed based according to their RHD genotype

How do I manage Rh typing in obstetric patients? Haspel R, Westhoff CM Transfusion 2015 55:470-74

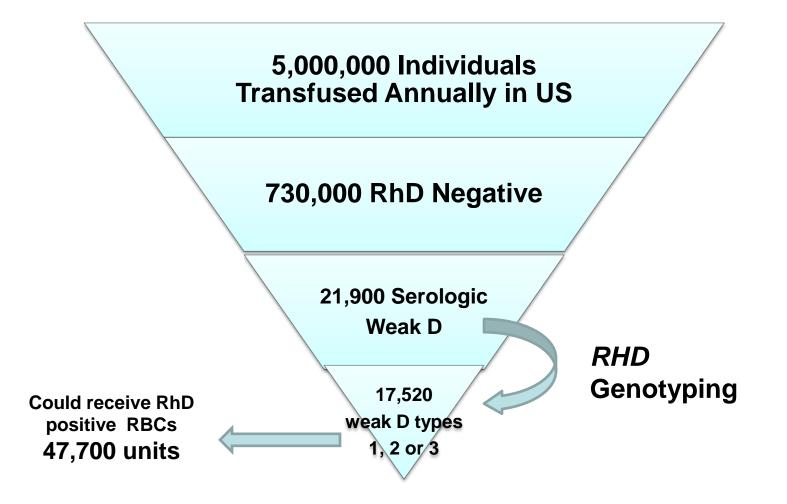

▲ New York Blood Center

Algorithm for Resolving Serologic Weak D Test Results by RHD Genotyping for Determining Candidacy for RhIG and Rh Type for Red Cell Transfusions

Result of RhD typing by Manual Tube or Automated Methods

Potential Benefits of *RHD* Genotyping Pregnant Women

▲ New York Blood Center


Why be concerned about excess usage of RhIG?

- one of the greatest medical advances of the 1960's
- Very safe product

BUT

- a human blood product
- manufactured from pooled plasma from paid donors
- must be actively immunized
- ethical issues when biologic products are administered unnecessarily
- are no reports of transmission of hepatitis B virus, hepatitis C virus, or HIV caused by RhIG manufactured in the United States......
- always potential for emerging agents

Potential Benefit of *RHD* Genotyping Transfusion Recipients

A New York Blood Center

Rh Workgroup Recommendations

- Definition of weak D serologic result
 - weaker than expected reactivity (<2+)
 - depends on method, reagent, and local population being tested
 - institution should have policy
- Are not indicating institutions must change methods of typing or do an IAT on all female patients
- Use *RHD* genotyping to resolve
 - D typing discrepancies
 - weaker than expected reactivity
- Use RHD genotyping to manage clinical decisions
 - Determine candidates for Rh immune globulin
 - RhD status for blood transfusion

Rh Workgroup Recommendations

- For women with a serological weak D phenotype associated with an *RHD* genotype **other than weak D type 1, 2 or 3**, the work group recommends conventional prophylaxis with RhIG at this time.
- Reference laboratories performing RBC genotyping services should offer tiered services, beginning **with affordable first-tier testing**, so that the most prevalent and clinically relevant *RHD* genotypes can be detected.
- Clinicians and investigators are encouraged to **publish outcomes** of pregnancies and transfusions of individuals with *RHD* genotypes for which the risk of RhD alloimmunization is unknown.
- **Phasing-in** *RHD* **genotyping** will apply modern genomic methods for more precise decision making in obstetrical practice and transfusion medicine.

Financial Implications of RHD genotyping for OB's

Cost-Benefit Analysis

- RHD genotyping is an LDT <u>Laboratory Developed Test</u>
- Research Use RUO testing (CPT code)
- Performed in CLIA regulated laboratory
- Cost of testing has not "stabilized"
- Goal: evaluate the costs of RHD genotyping for pregnant females with serologic weak D phenotypes
 - using a comparison strategy of managing as D-
 - RHD genotyping done at first visit/first pregnancy when Rh typing done and results made part of medical record
 - direct medical costs assessed over 10- and 20-year periods for a simulated population of US women
 - one-way and probabilistic sensitivity analyses used to assess the robustness of conclusions

Cost Input Parameters – CMS reimbursement

Testing and Product	Cost \$	Range
Initial Testing		
ABO Group	12.12	(9.09-15.15)
RhD Type	12.12	(9.09-15.15)
Additional RhD Testing		
RHD Genotyping Assay	250	(100-500)
Cord Blood RhD Typing	30.33	(22.75-37.91)
Blood Products		
Rh Immune Globulin (300 µg dose)	162	(121.50-202.50)
Rh Immune Globulin Administration	9.60	(7.20-12.00)

Cost-savings over treating as Rh negative when *RHD* genotyping is ~ \$256

Financial implications of RHD genotyping of pregnant women with serologic weak D phenotype Kacker S, Vassallo R, Keller M, Westhoff CM, Frick K, Sandler S, Tobian A *Transfusion 2015 Early View*

Limitations

• Did not address *detection* of partial D phenotypes

 workgroup focus on clinical management of patients with a serologic weak D phenotype

– some women with weak D+ will not be detected by method used

- are typed as D negative
- get unnecessary RhIG

Will require testing all Rh negative women by RHD genotyping

- women with partial D who type strongly D+ (partial DIIIa, DIVa)

- are typed as D positive
- do not get the needed RhIG
 - no cases associated with fatal HDFN in literature
 - but results in costly monitoring of an "at risk pregnancy"

Will require testing all Rh positive women by RHD genotyping

Future for all pregnant women

Rh status will be determined by RHD genotyping

Summary Recent Publications in Transfusion

1. It's time to phase in RHD genotyping for patients with a serologic weak D phenotype Sandler S, Flegel W, Westhoff CM, Denomme G, Delaney M, Keller M, Johnson S, Katz L, Queenan T, Vassallo R, Simon C. *Transfusion 2015:55:680-689*

- Commentary from RhD workgroup (ABC, AABB, CAP, ARC, ACOG)
- Goal to BEGIN standardization of practice
- 2. How do I manage Rh typing in obstetric patients? Haspel R, Westhoff CM Transfusion 2015 55:470-74
 - 25% of women with discrepant or weak D typing were at risk
 - 75% were weak D type 1, 2, or 3 and NOT at risk

3. Financial implications of RHD genotyping of pregnant women with serologic weak D phenotype Kacker S, Vassallo R, Keller M, Westhoff CM, Frick K, Sandler S, Tobian A *Transfusion 2015 Early View*

- Rather than managing as D-
- Cost-savings when cost of RHD genotyping is below \$256

Thank You !

New York Blood Center Immunohematology and Genomics Laboratory