

Mark Solution A New York Blood Center Enterprises

Allo or Auto?

Real World Application of Blood Group Genomics

Lynsi Rahorst, MHPE, MLS(ASCP)SBB^{CM} Manager, Education & Training, IRL/Genomics Labs New York Blood Center Enterprises Irahorst@cbckc.org

A New York Blood Center Enterprises

Objectives

- Describe how antigen frequencies in the donor population can determine difficulty of finding units for a patient with multiple antibodies.
- Explain various serologic methods utilized in a case of complex antibodies, including selected cell panels, neutralization, enzyme treatment, and testing rare frozen RBCs.
- Discuss how blood group genotyping can help characterize an unexplained antibody and locate appropriate donors.

Background

- Patient History:
 - 35-year-old female
 - African American
 - Sickle cell disease
 - Multiply transfused, multiple antibodies:
 - Anti-C
 - Anti-E
 - Anti-Fy3
 - Anti-Jk^a

Let's look at each of these antibodies...

Anti-C and Anti-E

- Current ASH guidelines recommend antigen matching for Rh, K (Chou, et al. *Blood Advances*. 2020;4(2):327-355.)
 - Only "strong recommendation based on moderate certainty in the evidence about effects" out of 10 recommendations
- These antibodies were often first made by patients with SCD
- Goal to prevent/minimize further alloimmunization

Let's look at each of these antibodies...

• Anti-Fy3

- Fy3 antigen expressed on Fy(a+) and/or Fy(b+) RBCs
 - ~67% of black individuals Fy(a-b-)
 - ~0% of white individual Fy(a-b-)
- Fy3 antigen resistant to enzyme treatment (papain/ficin)
- Invariably, black individuals with Fy(a-b-) phenotype have GATA mutation
 - Mutation in promotor region of *FY* gene
 - Evolutionary advantage; protective against some malarial infections
 - *FY**02N.01 = allele encoding null phenotype on erythroid cells only
 - Not at risk for making anti-Fy^b; rarely make anti-Fy3
- Anti-Fy3 considered clinically significant
 - Give Fy(a-b-) units

Let's look at each of these antibodies...

• Anti-Jk^a

- Common antibody
- Known for
 - Fixing complement; causing intravascular hemolysis
 - Decreasing in titer quickly; causing DHTR

Problematic Antibody Combination: C-, E-, Fy3-, Jk(a-)

- R₀ (D+, C-, E-) phenotype commonly found in black population (46%)
- Fy3- phenotype commonly found in black population (68%)
- Jk(a-) phenotype less common in black population (8%)
 - Compared to 22% of white population Jk(a-)

0.46 X 0.68 X 0.08 = 2.5% of black donors

New Sample; New Antibody Identified

• Anti-Sd^a

Transfusion requirement up until now: C-, E-, Fy3-, Jk(a-)

- Sd^a antigen: 91% frequency in most populations (high prevalence)
 - 96% have Sd^a substance in urine
 - ~4% of population are truly Sd(a-) and can make antibody
- Sd^a antigen resistant to all chemical/enzyme treatment
- Anti-Sd^a
 - Characteristic appearance: refractile agglutinates in sea of free flowing RBCs
 - "Mixed field" due to different level of Sd^a antigen on RBCs in circulation
 - Does not react with cord RBCs
 - Neutralized by urine
 - Not clinically significant (phew!)

Here's how neutralization works:

Here's how neutralization works:

Incubation with soluble antigen (pooled urine)

Plasma with neutralized (inhibited) antibodies

Here's how neutralization works:

Neutralization Reactions

		Rh					Kell		Duffy		Kidd		MNS				Results			
				г					гла	Бур	ILa	цьр	N /	NI	S	S	PEG	Neut	Dil cont	
		U	C	E	Ľ	е		ĸ	гу≃	ГУ~	JK-	JK~	IVI				IAT	PEG IAT	PEG IAT	
1	R _o r	+	0	0	+	+	0	+	0	0	0	+	+	+	+	+	+W ^{MF}	0√	+w ^{MF}	
2	R _o r	+	0	0	+	+	+	+	0	0	0	+	0	+	0	+	+W ^{MF}	0√	+w ^{MF}	
3	R _o r	+	0	0	+	+	0	+	0	0	0	+	+	0	+	0	+W ^{MF}	0√	+w ^{MF}	
4	R _o r	+	0	0	+	+	0	+	0	0	0	+	+	+	0	+	+W ^{MF}	0√	+w ^{MF}	
5	rr	0	0	0	+	+	0	+	0	0	0	+	+	+	+	0	+W ^{MF}	0√	+w ^{MF}	
6	rr	0	0	0	+	+	0	+	0	0	0	+	0	+	0	+	+W ^{MF}	0√	+w ^{MF}	
Neut	= patie	ent pla	asma	neutr	alized	l with	pool	ed uri	ne											

Dil cont= dilution control; patient plasma + saline

Use neutralized plasma to:

- Rule out additional alloantibodies
- Confirm anti-Sd^a specificity

Another Sample; Another Antibody Identified

Transfusion requirement up until now: D-???, C-, E-, Fy3-, Jk(a-)

• Anti-D

- Weak/micro Anti-D in neutralized plasma
- Patient has been receiving D+ units
- Patient RBCs D+
- Is anti-D autoantibody or alloantibody?
 - Autocontrol/DAT positive; eluate contains anti-D
 - Reactivity with hypotonic washed autologous RBCs \rightarrow seems like alloantibody
 - RHD variants (partial D expression) prevalent in patients with SCD
 - Determining auto vs allo is important for unit selection

D-, C-, E-, Fy3-, Jk(a-) = 0.4% of Black donors No units available

Testing Units We Had Frozen For This Patient

	Rh						Kell		Duffy		Kidd		MNS				Results		
		C	E	6	0			Буа	Бур	Ika	цьр	N/I	NI	c	6	PEG	Neut	Dil cont	
	U	C	E	J	υ	ĸ	K	гу≃	гу∼	JK-	JK~	IVI	IN	5	5	IAT	PEG IAT	PEG IAT	
1	+	0	0	+	+	0	+	0	0	0	+	+	+	+	+	+W ^{MF}	+w	+W ^{MF}	
2	+	0	0	+	+	+	+	0	0	0	+	0	+	0	+	+W ^{MF}	0√	+W ^{MF}	
3	+	0	0	+	+	0	+	0	0	0	+	+	0	+	0	+W ^{MF}	+W	+w ^{MF}	
4	+	0	0	+	+	0	+	0	0	0	+	+	+	0	+	+W ^{MF}	0√	+W ^{MF}	
5	+	0	0	+	+	0	+	0	0	0	+	+	+	+	0	+W ^{MF}	+W	+w ^{MF}	
Neut= patient plasma neutralized with pooled urine																			
Dil co	Dil cont= dilution control; patient plasma + saline																		

Neutralized plasma:

- Contains anti-D
- 2/5 D+ units nonreactive
 - Both from same D+ donor

Case Recap

What we know...

- Anti-D
- Anti-C
- Anti-E
- Anti-Fy3
- Anti-Jk^a
- Anti-Sd^a (not clinically significant)

What we don't know...

- Anti-D auto or allo?
- Why are 2 D+ units compatible with neutralized plasma?

RH Blood Group System Genes & Proteins

Variant Alleles and D Antigen Expression

Differentiating Allo- From Autoantibody

•

A New York Blood Center Enterprises

RHD Genotyping Results

RHD*DAU3

RHD*DAU3

Patient *RHD* genotyping *RHD*DAU3* homozygote

- Allele encodes partial D antigen (double dose)
- Patient is at risk of making alloanti-D
- Anti-D detected likely alloanti-D
- Give D-negative units

Why were units from one D+ donor compatible?

RHD*DAU3

Deleted *RHD*

Donor: *RHD* genotyping *RHD*DAU3* hemizygote

- Same allele encodes partial D antigen (single dose)
- D antigen missing same epitopes as patient
- Compatible with anti-D made by patient with same variant allele

Perfect donor:

D+(partial), C-, E-, Fy(a-b-), Jk(a-); compatible with patient's neutralized plasma

2 units transfused successfully

Blood center continues to freeze this donor's units specifically for this patient

Case Conclusions

Opportunities

- RH genotyping for variants to determine allo vs autoantibody
- Example of *RH* genotype matching
 - Transfuse units from donor with same *RHD* genotype (same partial D antigen)
- Broadens donor pool if no
 D-,C-,E-,Fy(a-b-),Jk(a-) units available

Challenges

- Would need to *RH* genotype many donors to identify donors with same variant alleles
- Limitations of computer systems to store allele information
- Would you be able to transfuse D+ units to a patient with anti-D in your institution?

Key Points

- Multiply transfused patient with difficult antibody combination
- Difficult serologic reactivity requiring special techniques (neutralizations)
- Serology & genomics testing work together to resolve reactivity & locate compatible donor.

Objectives

- Describe how antigen frequencies in the donor population can determine difficulty of finding units for a patient with multiple antibodies.
- Explain various serologic methods utilized in a case of complex antibodies, including selected cell panels, neutralization, enzyme treatment, and testing rare frozen RBCs.
- Discuss how blood group genotyping can help characterize an unexplained antibody and locate appropriate donors.

Thank you! Questions?

