Exploring the Evolution of the Biotherapies Revolution

Suzanne Thibodeaux, MD PhD

Associate Professor Department of Pathology and Immunology Washington University School of Medicine St. Louis, MO, USA

May 8, 2024

Washington University in St. Louis School of Medicine

Disclosures

- No relevant financial disclosures
- Board of Directors Association for the Advancement of Blood and Biotherapies (AABB)
- Member of apheresis working group in the NHLBI Cure Sickle Cell Initiative

Learning objectives

By the end of this presentation, audience members should be able to:

- Describe general characteristics of biotherapies in clinical use
- Compare biotherapies under development in anticipation of clinical use

Defining biotherapies

- Substances made from living organisms to treat disease that may occur naturally in the body or may be made in the laboratory
- Types of biotherapy can include (a few examples):
 - Molecules
 - cytokines
 - cancer vaccines
 - Antibodies
 - Cells
 - Blood transfusions (the original biotherapy!)
 - hematopoeitic stem cell transplants
 - Genetically modified cells
 - Chimeric antigen receptor T cells
 - Genetically modified hematopoietic stem cells

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/biotherapy, https://www.aabb.org/news-resources/resources/cellular-therapies

Manufacturing genetically modified cells is a complex process

Adapted from: Dinh A and Stroncek D. Transfusion.2024;64:357–366

Manufacturing genetically modified cells is a complex process

Adapted from: Blood Cancer Discov. 2021;2(5):408-422. doi:10.1158/2643-3230.BCD-21-0084

Chimeric Antigen Receptor (CAR) T cells combines the best of B cell and T cell functions

BMJ 2022;378:e068956

There are currently 6 CAR T cells approved for clinical use

Each approved CAR T cell has unique attributes

Cappell, K.M., Kochenderfer, J.N. Nat Rev Clin Oncol 20, 359-371 (2023)

Not just CARs anymore: genetically modified hematopoietic stem cells were recently approved

Sickle cell disease is caused by a single base mutation in the hemoglobin (red blood cell) gene. This changes standard, round-shaped red blood cells into sickleshaped red blood cells. A new treatment called gene therapy may be able to change the expression of this gene in sickle cell patients by replacing the abnormal hemoglobin gene with a standard hemoglobin gene.

Gene therapy is done by first taking the patient's own hematopoietic (blood) stem cells, which are found in the bone marrow.

> How Can Gene Therapy Cure Sickle Cell Disease?

Then the removed stem cells are repaired using a vector that carries both the standard gene as well as a part of a virus that has been modified not to cause any infection. The vector acts like a shuttle and can carry the standard hemoglobin cell gene into the stem cell.

The newly created stem cells made by the standard hemoglobin gene are then given back to the patient (through transfusion) to help produce both non-sickled red blood cells and more healthy stem cells. These new stem cells will continue to produce non-sickled red blood cells, helping to significantly reduce the need for regular blood transfusions, as well as reducing pain and other related symptoms.

https://curesickle.org/sites/scdc/themes/scdc/images/CSC_GenetherapyInfographicSELF.png

Each approved genetically modified hematopoietic stem cell has unique attributes

exagamglogene autotemcel (exa-cel)

lovotibeglogene autotemcel (lovo-cel)

5 Engineered stem cells make healthy fetal haemoglobin and normal red blood cells

https://www.bbc.com/news/health-67435266, https://investor.bluebirdbio.com/static-files/1953f998-cf49-4cfb-8e88-d52c0a9b7528

The future of cell and gene therapies is wide open

Adapted from: Dinh A and Stroncek D. Transfusion.2024;64:357–366

The future of cell and gene therapies is wide open

Blood Cancer Discov. 2021;2(5):408-422. doi:10.1158/2643-3230.BCD-21-0084

Any substantial change in the process = a new product

Adapted from: Blood Cancer Discov. 2021;2(5):408-422. doi:10.1158/2643-3230.BCD-21-0084

New products must be fully vetted at every stage of the process

Cell therapy production process

	Cell source	Modification	Manufacturing	Testing	Distribution/delivery	Clinical application
Option	 Autologous Allogeneic Xenogeneic 	 Transgenes and synthetic circuits Cas9 genome an epigenome edition Surface modification Biomaterials 	s d ng • Media composition • Feeder cells, aAPCs	 Cell assays (qPCR, cell phenoty) Analytical as (non-cell components) 	 Temperature requirements Shipment size and location logistics 	 Location and time of administration Timing of stay and recovery
Challer	 Testing for safe Source/donor variability Complex IP consideration 	 Design of function Efficiency of modification Avoid immune response 	 Scalability from preclinical to clinical Batch-to-batch reproducibility Sourcing GMP components 	al • Potency • Sterility • Viability • Purity/identi	 Logistics Delivery time and cost Storage 	 Long-term monitoring Safety Durability of response

New products can take decades to reach approval

Drug Development Pipeline

Gene therapy

Witkowsky, et al. Gene Ther 30, 747–752 (2023)

No treatment is without risk

WARNING: HEMATOLOGIC MALIGNANCY See full prescribing information for complete boxed warning.

Hematologic malignancy has occurred in patients treated with Monitor patients closely for evidence of malignancy through complete blood counts at least every 6 months and through integration site analysis at Months 6, 12, and as warranted. (5.1)

4/18/24

FDA Requires Boxed Warning for T cell Malignancies Following Treatment with BCMA-Directed or CD19-Directed Autologous Chimeric Antigen Receptor (CAR) T cell Immunotherapies

Conclusions and considerations

- Genetically modified biotherapies in clinical use include:
 - CAR T cells for B cell malignancies
 - CAR T cells for multiple myeloma
 - Genetically modified hematopoietic stem cells for hemoglobinopathies

- Many parts of the process are under study for new products
 - Source of cells
 - Target
 - disease indication
 - Manufacturing process
 - Etc.

It is an exciting time to be in the field of biotherapies!

Thank you!

