

CASE REPORT: IVIG-INDUCED HEMOLYSIS

Natalie Malvik, MD, MPH

NO DISCLOSURES

Patient history:

- 53 year-old female patient
- History of MDS (myelodysplastic syndrome)
- Day+ 90 of allogeneic hematopoietic stem cell transplant
- Presented for IVIg (intravenous immunoglobulin) infusion*

*Support immunoglobulin levels, prevent opportunistic infection, prevent CMV reactivation, reduce GVHD

- Developed slight fever (100.5 F) after infusion
- Rechecked after 30 minutes (decreased to 99.2 F)
- Called blood bank to report transfusion reaction...

- Not technically a blood product
- Distributed by pharmacy at our hospital
- Pharmacy responsible for reporting adverse events to FDA

Recommendations:

- Monitor patient for signs/symptoms of hemolysis
 - Fever
 - Back/flank pain
 - Red or dark urine
 - Jaundice, scleral icterus
- Monitor hemolytic indices/lab indicators of hemolysis
 - Hemoglobin/hematocrit
 - Haptoglobin
 - LDH
 - Bilirubin
 - Reticulocyte indices
 - Urobilinogen (urine)
 - Microspherocytes or schistocytes on peripheral smear

Patient already left (outpatient) – follow-up in clinic in 7 days

- Unfortunately, no recent labs for baseline
- Initial lab values (immediately after IVIg):
 - DAT = negative
 - LDH = 545 U/L ↑
 - Reticulocyte count/% = 8% \uparrow
 - Haptoglobin = 14 mg/dL \downarrow
 - Total bilirubin = 1.1 mg/dL
 - Hemoglobin = 8.6 g/dL
 - No microspherocytes/schistocytes on smear

Initial lab values:

- DAT = negative
- LDH = 545 U/L 个
- Reticulocyte count/% = 8% ↑
- Haptoglobin = 17 mg/dL \downarrow
- Total bilirubin = 0.4 mg/dL
- Hemoglobin = 10.3 g/dL \downarrow
- No microspherocytes/schistocytes on smear
 - One week later:
 - DAT = negative
 - LDH = 588 U/L 个
 - Reticulocyte count/% = 13% \uparrow
 - Haptoglobin = 14 mg/dL \downarrow
 - Total bilirubin = 1.1 mg/dL
 - Hemoglobin = 8.6 g/dL \downarrow
 - Rare microspherocytes on smear

-No fever or other signs/symptoms -Subsequent improvement in labs

BACKGROUND: IVIG

BACKGROUND

- Around since 1930s
- Steep increase in use the past 2 decades
- Broad clinical utility
 - FDA approved for many diseases
 - Replacement therapy for immune deficiency
 - Hematologic, neurologic, immunologic, rheumatologic diseases
 - Immunomodulatory effects in autoimmune disorders
 - Guillain–Barre syndrome
 - Myasthenia gravis
 - Chronic inflammatory demyelinating polyneuropathy (CIDP)
 - Others
 - Exact mechanism unknown

BACKGROUND

Prepared from plasma from 10,000-60,000 donors

Opheresis plasma

For U.S. use: can only be collected in U.S.

- [®] Predominantly IgG, with small amounts of IgA and IgM
 - Suggested to screen for IgA deficiency prior to treatment (risk of anaphylaxis)
- Viral transmission is rare
 - Rigorous donor screening
 - Stringent manufacturing process

BACKGROUND

- Immunoglobulin can be administered via IV route or SubQ
 - SubQ formulation is typically more concentrated (smaller volume)
 - Less severe side effects with SubQ (injection site reaction, delayed headache)
- IVIg generally well-tolerated
 - 0 < 5% of patients with adverse effects (AEs)
 - ⁽¹⁾ Can lessen some AEs with slower infusion rate and/or analgesics:
 - Headache, backache, fever, chills/rigors during infusion
 - Ocertain AEs seen with high doses
 - Thrombosis, aseptic meningitis, hemolysis, renal failure

IVIG-RELATED HEMOLYSIS

MECHANISMS

Most cases due to donor anti-A and/or anti-B antibodies
IgG thought to play the largest role, via extravascular hemolysis
IgG attaches to RBC antigens and tagged RBCs are removed/destroyed in spleen
IgM/complement only thought to play a minor role
May account for early positive DATs and small amount of hemolysis (intravascular)

Type A, B, or AB patients most affectedEspecially type AB

INCIDENCE

[®] Previously:

- Considered quite rare
- ~8% of IVIg administrations
- More recently (prospective studies):
 - Increased incidence documented by FDA since 2011
 - Incidence rate as high as 35-37% for non-type O patients receiving high doses
 - In Highest incidence in type AB patients
 - O Can be seen up to several days after dose

Likely underrecognized and underreported

INCIDENCE

Of those reported, most are:

- Self-limited with minor decrease in hemoglobin
- Positive direct antiglobulin test (DAT)
- Occasionally causes severe hemolysis requiring transfusion

• Very rarely fatal

WAYS TO INCREASE DETECTION

- Monitoring (labs and signs/symptoms)
- Consider elution in cases with high suspicion but negative DAT
 - Include A and/or B cells instead of type O reagent cells
- Plasma free hemoglobin

PRIMARY RISK FACTORS

- Administration of high-dose IVIG (especially greater than or equal to 2 g/kg)
- Non-O blood group recipients (esp. type AB)

TREATMENT

- Cessation of IVIG infusion
- Otherwise similar to treatment for hemolytic transfusion reaction (largely supportive)
- Monitor vital signs and urine output
- Proper hydration
- RBC transfusions if necessary, but <u>only with type O blood</u>

DREVENTION 1

- Stop IVIG altogether (if possible)
- Limit dosage amount
- Consider SubQ administration
- Processing certain methods can greatly reduce isohemagglutinins
- Possibly type-specific IVIg in future?

CASE REPORT

- No further hemolysis beyond one week
- Patient asymptomatic no need to transfuse
 - Patient was blood type A+ (no antibody history)
 - Recommended type O blood if transfusion needed
 - Monitor for hemolysis with future IVIg doses

REFERENCES

- Mohamed M. Intravenous immunoglobulin-associated hemolysis: risk factors, challenges, and solutions. International Journal of Clinical Transfusion Medicine. 2016;4:121-131.
- Yannakou CK, Robinson AJ, Ratnasingam S, et al. Intravenous Immunoglobulin Post Allogeneic Stem Cell Transplantation Is Associated with Lower Levels of CMV Reactivation. Blood. 2014;124(21): 2482.
- Cuesta H, El Menyawi I, Hubsch A, et al. Incidence and risk factors for intravenous immunoglobulin-related hemolysis: A systematic review of clinical trial and real-world populations. Transfusion. 2022;62(9):1894-1907.
- Jacobs J, Kneib J, Gabbard A, Intravenous Immunoglobulin-Associated Hemolytic Anemia. Laboratory Medicine. 2020;51(5):e47–e50.
- Pendergrast J, Armali C, Callum J, et al. A prospective observational study of the incidence, natural history, and risk factors for intravenous immunoglobulinmediated hemolysis. Transfusion. 2021;61:1053-1063.

QUESTIONS?

