CD 38 & CD 47 – Blood Bank's Kryptonite

Shay Jones MLS (ASCP)^{CM}, BB^{CM}

Objectives

- At the end of this presentation, participants should be able to distinguish the differences between reactivity due to anti-CD38 and anti-CD47 therapies
- At the end of this presentation, participants should be able to design a workflow to allow for the resolution of reactivity due to anti-CD38 and anti-CD47 therapies

- Daratumumab works through different mechanisms of action
 - Antibody-dependent cellular cytotoxicity
 - Antibody-dependent cellular phagocytosis
 - Complement-dependent cytotoxicity
 - Direct cytotoxicity through apoptosis by Fc gamma receptor-mediated

- What does this mean for blood banks?
 - CD 38 proteins are found in minimal amounts on red blood cells – including reagent red blood cells
 - Patients receiving anti-CD38 therapy may show weak reactivity during serologic testing (DAT, antibody screen, antibody ID, XM)

- The immediate concern is the masking of potential, clinically significant alloantibodies
- There are a recommendations for patients <u>before</u> starting anti-CD38 therapy
 - An initial type and screen to detect any new or historical antibodies present
 - Phenotype or genotype may be helpful in providing pRBCs for future transfusions (more on that later)
- Like everything in blood bank, communication is key! The more prepared for the observed reactivity, the quicker the patient can receive transfusion

- Initial reactions observed during antibody screen testing
 - Patient history indicates recent anti-CD38 treatement

			Rh				MN	ISs		K	ell	Du	ffy	Ki	dd		Results
	D	С	E	С	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	5' RT	PEG IAT
1	+	+	0	0	+	+	+	0	+	+	+	0	+	+	0	0	1+
2	+	0	+	+	0	+	0	0	+	0	+	+	0	0	+	0	1+
3	0	0	0	+	+	0	+	+	+	+	+	0	+	+	+	0	1+

- Like most panreactivity, alloadsorptions may be the blood banks/ IRLs first thought...
 - Adsorptions using untreated or treated cells fails to adsorb out the CD 38 antibody
- Dithiothreitol (DTT) treated cells are successful in removing the reactivity
 - Keep in mind that DTT treatment does <u>not</u> just remove the CD 38 proteins (Kell, Lutheran, YT, JMH, LW, Cromer, Indian, Dombrock and Knops)
 - As some of these antigens are low prevalence or clinically insignificant, the most common concern is Kell system antibodies

Successful DTT treatment

			Rh				MN	Ss		K	ell	Du	ffy	Ki	dd	Results
	D	С	E	С	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	DTT treated reagent RBCs
1	+	+	0	0	+	+	+	0	+			0	+	+	0	0√
2	+	0	+	+	0	+	0	0	+			+	0	0	+	0√
3	0	0	0	+	+	0	+	+	+			0	+	+	+	0√

				Rh				MN	 ISs		K	ell	Du	ffy	Ki	dd	Results
		D	С	E	c	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	DTT treated reagent RBCs
1	R1R1w	+	+	0	0	+	+	+	0	+			+	0	+	0	0√
2	R1R1	+	+	0	0	+	+	0	0	+			+	+	0	+	0√
3	R2R2	+	0	+	+	0	+	0	0	+			+	+	0	+	0√
4	Ror	+	0	0	+	+	+	+	+	0			0	0	+	0	0√
5	r'r	0	+	0	+	+	0	+	0	+			+	0	+	0	0√
6	r"r	0	0	+	+	+	0	+	0	+			0	+	+	+	0√
7	rr	0	0	0	+	+	0	+	+	+			0	+	+	0	0√
8	rr	0	0	0	+	+	+	0	+	0			+	+	+	+	0√
9	rr	0	0	0	+	+	0	+	0	+			+	+	0	+	0√
10	rr	0	0	0	+	+	0	+	+	0			0	+	0	+	0√
11	R1R1	+	+	0	0	+	+	0	+	0			0	+	+	0	0√

THE JOURNAL OF AABB

transfusion.org

TRANSFUSION

IMMUNOHEMATOLOGY

Use of an in-house trypsin-based method to resolve the interference of daratumumab

Nnaemeka Ibeh, Ian Baine, Louella Fuentes Rudon, Christine Lomas-Francis, Jeffrey S. Jhang, Patricia Galdon, Connie M. Westhoff, Randall W. Velliquette, Suzanne A. Arinsburg

First published: 01 September 2021 | https://doi.org/10.1111/trf.16635 | Citations: 1

 Trypsin treatment can also be helpful in mitigating the anti-CD38 reactivity while being able to rule out antibodies to Kell system antigens

			Rh				MN	ISs		K	ell	Du	ffy	Ki	dd	Results
	D	C	E	С	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	Trypsin treated reagent RBCs
1	+	+	0	0	+	+	+	0	+	+	+	0	+	+	0	0 √
2	+	0	+	+	0	+	0	0	+	0	+	+	0	0	+	0 √
3	0	0	0	+	+	0	+	+	+	+	+	0	+	+	+	0√

- Initial reactions observed during antibody screen testing
 - This patient is from out of town
 - Up to date medical history is limited
 - Patient mentions the diagnosis of multiple myeloma

			Rh				MN	ISs		K	ell	Du	ffy	Ki	dd		Results
	D	C	E	С	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	5' RT	PEG IAT
1	+	+	0	0	+	+	+	0	+	+	+	0	+	+	0	0	1+
2	+	0	+	+	0	+	0	0	+	0	+	+	0	0	+	0	1+
3	0	0	0	+	+	0	+	+	+	+	+	0	+	+	+	0	1+

 Due to the history of MM, the tech takes a wild guess

			Rh				MN	ISs		K	ell	Du	ffy	Ki	dd	Results
	D	C	E	c	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	DTT treated reagent RBCs
1	+	+	0	0	+	+	+	0	+			0	+	+	0	0√
2	+	0	+	+	0	+	0	0	+			+	0	0	+	0√
3	0	0	0	+	+	0	+	+	+			0	+	+	+	0√

- At this point, the provider is consulted to try and get a clear medical history...
 - After some time, it is determined that the patient IS NOT receiving any anti-CD38 therapy...

				Rh				MN	 ISs		K	ell	Du	ffy	Ki	dd	Results
		D	С	E	c	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	DTT treated reagent RBCs
1	R1R1w	+	+	0	0	+	+	+	0	+			+	0	+	0	0√
2	R1R1	+	+	0	0	+	+	0	0	+			+	+	0	+	0√
3	R2R2	+	0	+	+	0	+	0	0	+			+	+	0	+	0√
4	Ror	+	0	0	+	+	+	+	+	0			0	0	+	0	0√
5	r'r	0	+	0	+	+	0	+	0	+			+	0	+	0	0√
6	r"r	0	0	+	+	+	0	+	0	+			0	+	+	+	0√
7	rr	0	0	0	+	+	0	+	+	+			0	+	+	0	0√
8	rr	0	0	0	+	+	+	0	+	0			+	+	+	+	0√
9	rr	0	0	0	+	+	0	+	0	+			+	+	0	+	0√
10	rr	0	0	0	+	+	0	+	+	0			0	+	0	+	0√
11	R1R1	+	+	0	0	+	+	0	+	0			0	+	+	0	0√

- This sure smells like anti-CD38...
- Patient information is key!
 - This patient is being seen by another facility!
 - The blood bank reaches out to the outside facility and learns the patient IS receiving anti-CD-38 therapy!
 - With that information, and the observed reactivity, we are able to determine that the reactivity seen is due to the anti-CD38

Test	Negative (no interference)	Positive (reactive with all cells)	Negative or positive
ABO/RhD typing	X	N/A	N/A
Antibody detection ("screen")	N/A	X	N/A
Antibody identification	N/A	X	N/A
DAT	N/A	N/A	X
IS crossmatch	X	N/A	N/A
AHG crossmatch*	N/A	X	N/A

- The University of Kansas Health System policy
 - Initial antibody screen is performed in solid phase method – confirmation that patient is receiving anti-CD38 treatment
 - Patient's plasma is tested with 3 cell screening cells in LISS IAT
 - Patient's plasma is tested with previously DTT treated or newly DTT treated reagent red blood cells are tested
 - If the LISS cells are positive and DTT cells are negative,
 K negative units are provided

Review: Effects of anti-CD38 monoclonal antibodies on red blood cell transfusion and interventions

Jia Song 1 and Rong Fu^{M 1}

- 47 patients received 147 units of RBCs for transfusion
 - No patients had any subsequent transfusion reaction or hemolysis
 - Cited efficacy of transfusing phenotyped matched RBCs

Vox Sanguinis

Original Paper

Risk of RBC alloimmunization in multiple myeloma patients treated by Daratumumab

Zhan Ye 🔀, Laurie A. Wolf, Daniel Mettman, Fred V. Plapp

- A retrospective study of 45 MM patients
 - June 2015 December 2018
 - All cases of positive aby screens were DTT treated
 - Transfusion history was monitored from first dose of DARA to the last
 - Control group: 46 MM patients receiving transfusion but NOT DARA

Vox Sanguinis

Original Paper

Risk of RBC alloimmunization in multiple myeloma patients treated by Daratumumab

- Than Ye X. Laurie A. Wolf, Daniel Mettman, Fred V. Plapp
 - 184 aby screens were performed on 45 patients
 - Patients transfused with ABO-Rh compatible RBCs, phenomatched units or both
 - No detectable antibody after DTT treatment
 - 2 patients with historical antibodies no new alloantibodies detected
 - Risk of alloantibody formation is very low, no significant difference between ABO-Rh compatible and phenomatched RBCs

TRANSFUSION transfusion.org

BRIEF REPORT

Efficient neutralization of daratumumab in pretransfusion samples using a novel recombinant monoclonal anti-idiotype antibody

Fleur Aung, Jeff Spencer, David Potter, Thuy-Dung Pham, Naheed Farooqui, Kathryn R. Platt, Raja Zayat, Melanie Oliveira, Robin Smeland-Wagman, Eric Petersen, Richard M. Kaufman

- Recombinant monoclonal rabbit anti-DARA antibody was created
- IAT's in gel were performed to determine the ratio of anti-DARA
- Anti-DARA was used in tube tests to determine, and confirm, the ability to detect underlying alloantibodies

BRIEF REPORT

Efficient neutralization of daratumumab in pretransfusion samples using a novel recombinant monoclonal anti-idiotype antibody

Fleur Aung, Jeff Spencer, David Potter, Thuy-Dung Pham, Naheed Farooqui, Kathryn R. Platt, Raja Zayat, Melanie Oliveira, Robin Smeland-Wagman, Eric Petersen, Richard M. Kaufman

- At a ratio of 1:1 (or greater), anti-DARA was able to neutralize the DARA reactivity
- Anti-E and anti-K were identified in patient's neutralized plasma

BRIEF REPORT

Efficient neutralization of daratumumab in pretransfusion samples using a novel recombinant monoclonal anti-idiotype antibody

Fleur Aung, Jeff Spencer, David Potter, Thuy-Dung Pham, Naheed Farooqui, Kathryn R. Platt, Raja Zayat, Melanie Oliveira, Robin Smeland-Wagman, Eric Petersen, Richard M. Kaufman

- The use of anti-CD38 therapy will continue to effect blood bank testing results
- · Communication is key!
 - There are many examples of patient medication charts not being updated
 - Often a patient will remember that they may have received treatment at another facility
 - Having updated patient information is key (to not only all of blood bank ©) to properly identifying reactivity due to anti-CD38 treatment

- CD 47 is a transmembrane protein and an important tumor antigen, overexpressed on multiple types of tumor cells
- CD 47 provides tumor cells with a "don't eat me" signal that allows tumor cells to evade the immune system
- Multiple clinical trials in the past were halted due to severe hemolytic reaction of anti-CD47

CD47-SIRPa

CD47—Integrin associated protein (IAP)

- · Ig-like protein
- 5 membrane spanning segments
- Short cytoplasmic tail
- Ubiquitous expression including T, B, RBC, platelet, HSC

 CD47 working with SIRPα will create the "don't eat me" signal – "The CD47-SIRPα axis"

 CD47 on cancer cells can inhibit myeloid cellmediated clearance

- Studies focusing on blocking the CD47-SIRPα axis are of interest.....
- The ultimate goal is to block the CD47 action to allow and even enhance phagocytosis

- What does it mean for blood banks?
 - Like anti-CD38, anti-CD47 is found in large numbers on RBCs and PLTs
 - Unlike CD38, CD47 causes interference in all phase of testing (IS, RT, AHG)

Monoclonal anti-CD47 interference in red cell and platelet testing

Randall W. Velliquette, Judith Aeschlimann, Julie Kirkegaard, Gayane Shakarian, Christine Lomas-Francis, Connie M. Westhoff

 This study found that plasma from recipients of anti-CD47 therapies still had reactivity with DTT, trypsin, papain, α-chymotrypsin treated RBCs

Test RBCs	IS	IAT * Ortho anti-IgG	IAT Carryover from IS Gamma-clone anti-IgG
D- rr (ce/ce)	4+	4+	mi-1+
D+	3+	4+	mi-1+
R ₂ R ₂ (DcE/DcE)			
D	0	4+	0/0
Rh _{mod}	0	3+	0/0
Rh _{null}	0	2+	0/0
D+ cord	3+	2+	mi-1+
Reverse (A or B)	3+		
Auto/DAT	0	0/mi	0/mi
Eluate	NT	4+	mi-1+

Monoclonal anti-CD47 interference in red cell and platelet testing

Randall W. Velliquette, Judith Aeschlimann, Julie Kirkegaard, Gayane Shakarian, Christine Lomas-Francis, Connie M. Westhoff

Platelet testing

 This study found that patient's that had not had prior plt transfusion, who received anti-CD47 had positive reactions observed with both Capture-P tests but negative reactions by ELISA testing

Sample	Sex	Monoclonal antibody therapy	Capture-P (% positive wells of 8)	Capture-P ready-screen (% positive wells of 13)	PakPlus
1	Male	Hu5F9-G4	Pos (100%)	Pos (100%)	Neg
2	Female	Hu5F9-G4	Pos (100%)	Pos (100%)	Neg
3	Male	DARA	Neg	Neg	Neg
4	Male	DARA	Pos (75%)	Pos (8%)	GP lb/IX, IV HLA
5	Male	DARA	Pos (100%)	Pos (30%)	Neg
6	Male	DARA	Pos (100%)	Pos (30%)	Neg
7	Male	DARA	Pos (100%)	Neg	GP IIb/IIIa
8	Male	DARA	Pos (100%)	Pos (23%)	Neg

- There is still hope!
 - Reactivity was found to be removed with multiple alloadsorptions with papain-treated RBCs OR pooled platelets....
- There is even better hope!
 - Anti-CD47 is an IgG4 antibody
 - The use of Gamma-clone anti-IgG does not detect IgG4
 - Anti-CD47 reactivity is not usually observed in SPRCA testing

Initial reactions observed during ABO/Rh testing

		Front Type			Back Type						
Anti-A	Anti-B	A1 Lectin	Anti-D	Rh Control	A ₁	A ₂	В	0	Auto control		
4+	0	0	3+	0	4+	4+	4+	4+	4+		

- Initial reactions observed during antibody screen
 - Patient has a history of anti-E

	Rh				MN	ISs		K	ell	Du	ffy	Ki	dd		Results		
	D	С	E	c	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	5' RT	PEG IAT
1	+	+	0	0	+	+	+	0	+	+	+	0	+	+	0	3+	4+
2	+	0	+	+	0	+	0	0	+	0	+	+	0	0	+	3+	4+
3	0	0	0	+	+	0	+	+	+	+	+	0	+	+	+	4+	4+

- At KU, we do not use the Gama-clone IgG
- We do have SPRCA....

	Rh					MN	ISs		K	ell	Du	ffy	Ki	dd	Results	
	D	C	E	c	e	M	N	S	S	K	k	Fy a	Fy b	Jk a	Jk b	SPRCA
1	+	+	0	0	+	+	+	0	+	+	+	0	+	+	0	0
2	+	0	+	+	0	+	0	0	+	0	+	+	0	0	+	2+
3	0	0	0	+	+	0	+	+	+	+	+	0	+	+	+	0

	Rh						MN	ISs .		K	ell	Du	ffy	Kidd		Results	
		D	D C E c e			M	N	S	s	K	k	Fy	Fy	Jk	Jk	SPRCA	
													a	b	a	b	
1	R1R1w	+	+	0	0	+	+	+	0	+	+	+	+	0	+	0	0√
2	R1R1	+	+	0	0	+	+	0	0	+	0	+	+	+	0	+	0√
3	R2R2	+	0	+	+	0	+	0	0	+	0	+	+	+	0	+	2+
4	Ror	+	0	0	+	+	+	+	+	0	0	+	0	0	+	0	0√
5	r'r	0	+	0	+	+	0	+	0	+	0	+	+	0	+	0	0√
6	r"r	0	0	+	+	+	0	+	0	+	0	+	0	+	+	+	2+
7	rr	0	0	0	+	+	0	+	+	+	+	+	0	+	+	0	0√
8	rr	0	0	0	+	+	+	0	+	0	+	0	+	+	+	+	0√
9	rr	0	0	0	+	+	0	+	0	+	0	+	+	+	0	+	0√
10	rr	0	0	0	+	+	0	+	+	0	0	+	0	+	0	+	0√
11	R1R1	+	+	0	0	+	+	0	+	0	0	+	0	+	+	0	0√

 We were unable to resolve the ABO discrepancy at KU

		Front Type			Back Type						
Anti-A	Anti-B	A1 Lectin	Anti-D	Rh Control	A ₁	A ₂	В	0	Auto control		
4+	0	0	3+	0	4+	4+	4+	4+	4+		

 We called the ABO type "NTD" and gave O positive units whenever transfusion was needed

Interestingly, KU's CD47 patient's reactions changed....

		Front Type			Back Type						
Anti-A	Anti-B	A1 Lectin	Anti-D	Rh Control	A ₁	A ₂	В	0	Auto control		
4+	0	0	3+	0	0	0	4+	0	0		

- The patient received their last dose of anti-CD47 in December 2022 – ABO/Rh = NTD
- This ABO/Rh type was done exactly one month later, January 2023

Drug Interference – CD47

- Transfusion recommendations can vary
 - Some facilities, if using alloadsorptions, opt to provide phenotypically matched
 - Other facilities, if using Gamma-clone IgG4, will provide XM compatible units

Conclusion – Things to remember: CD38

- Anti-CD38 reactivity is typically weak
- Anti-CD38 may affect multiple tests (DAT, Aby screen, XM, etc)
- Anti-CD38 is susceptible to DTT and trypsin treatment – keeping in mind what antigens are destroyed in these processes
- Most policies provide K antigen negative units remember the XM will be incompatible
- There are studies to suggest that patients receiving CD38 therapy are not prone to alloantibody formation

Conclusion – Things to remember: CD47

- Anti-CD47 reactivity is typically very strong
- Anti-CD47 may affect multiple tests (ABO,DAT, Aby screen, XM, etc)
- Anti-CD47 is <u>NOT</u> susceptible to DTT and trypsin treatment – the use of alloadsorptions or different testing methods/reagents is useful
- Transfusion protocols differ

Conclusion

- Anti-CD38 and anti-CD47 therapies are becoming more and more prevalent
- Knowing patient medical history is key to formulating a workflow for these patients
- Having a workflow for each treatment will allow for decreased turn-around-times for workups and will provide units to the patient more quickly

References

- Gozzetti A, Ciofini S, Simoncelli M, Santoni A, Pacelli P, Raspadori D, Bocchia M. Anti CD38 monoclonal antibodies for multiple myeloma treatment. Hum Vaccin Immunother. 2022 Nov 30;18(5):2052658. doi: 10.1080/21645515.2022.2052658. Epub 2022 Apr 11. PMID: 35404740; PMCID: PMC9225612.
- Lancman G, Arinsburg S, Jhang J, Cho HJ, Jagannath S, Madduri D, Parekh S, Richter J, Chari A. Blood Transfusion Management for Patients Treated With Anti-CD38 Monoclonal Antibodies. Front Immunol. 2018 Nov 15;9:2616. doi: 10.3389/fimmu.2018.02616. PMID: 30498492; PMCID: PMC6249335.
- Aung, Fleur, et al. "Efficient neutralization of daratumumab in pretransfusion samples using a novel recombinant monoclonal anti-idiotype antibody." *Transfusion*, vol. 62, no. 8, 2022, pp. 1511–1518, https://doi.org/10.1111/trf.17006.
- Ye, Zhan, et al. "Risk of RBC alloimmunization in multiple myeloma patients treated by Daratumumab." Vox Sanguinis, vol. 115, no. 2, 2019, pp. 207–212, https://doi.org/10.1111/vox.12864.
- Song J, Fu R. Review: Effects of anti-CD38 monoclonal antibodies on red blood cell transfusion and interventions. J Clin Lab Anal. 2021 Dec;35(12):e23832. doi: 10.1002/jcla.23832. Epub 2021 Nov 9. PMID: 34752645; PMCID: PMC8649382.
- Jiang, Z., Sun, H., Yu, J. *et al.* Targeting CD47 for cancer immunotherapy. *J Hematol Oncol* **14**, 180 (2021). https://doi.org/10.1186/s13045-021-01197-w
- Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C, Westhoff CM. Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion. 2019 Feb;59(2):730-737. doi: 10.1111/trf.15033. Epub 2018 Dec 5. PMID: 30516833.

