

Will

HAABB Fall Meeting

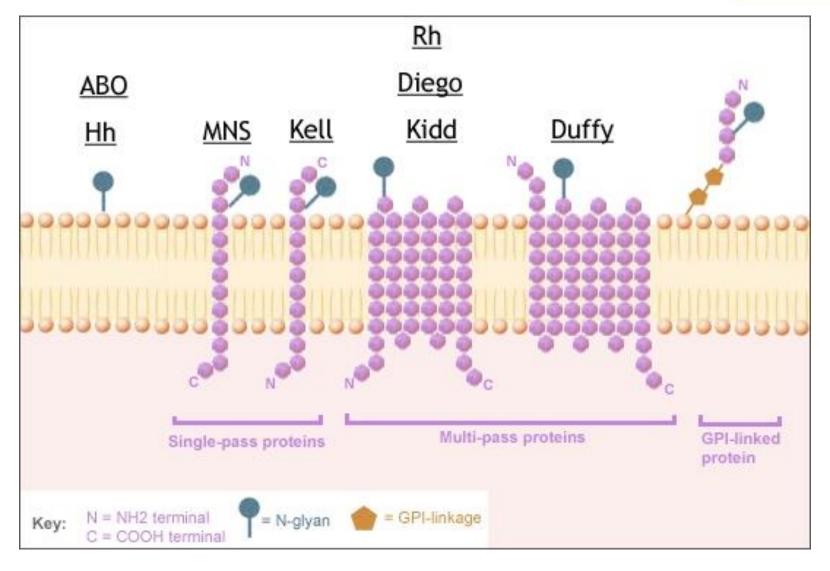
Sept 18, 2024

Clinical Scenario

- 11 month old male seen at University Hospital Emergency Department
- Referred from outside hospital with 2 weeks of right arm swelling and redness
- Some nausea and vomiting, diarrhea
- Rubbing his arm like 'it feels unusual'
- Physical exam confirmed the redness and swelling. Also unable to fully bend the elbow. Distal pulses and capillary refill are intact
- X Ray showed no fracture, but significant soft tissue swelling
- Admitted for further assessment and monitoring

Clinical Scenario

- Elevated WBC count and platelet count, but Hgb 8.4 gm/dL
- Neutrophils and monocytes increased on peripheral smear; no blasts seen
- ESR and C-reactive protein both elevated inflammation
- MRI large abscess surrounding the end of the ulna with osteomyelitis extending along proximal to mid-shaft
- Intraoperative cultures Group A Streptococci

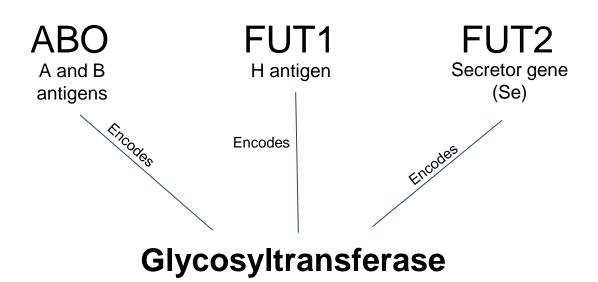

Blood Bank

- Forward type A, RhD negative
- Reverse type AB (no reactivity with test cells)
- Occurring on automated analyzer and on benchtop testing at RT
- Repeated by second technician with same results
- First technician able to get weak B reactivity with 4 degrees Celsius incubation x 30 minutes
- Second technician got weak A and B reactivity with similar cold incubation

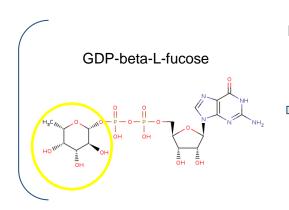
Blood Bank

- Antibody Screen negative; Negative autocontrol
- Cold Screen panreactive; Positive autocontrol
- Same results upon repeat testing

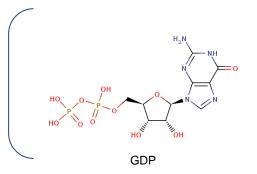
RBC membrane

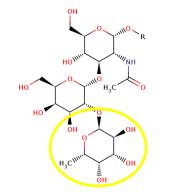


Carbohydrate Antigens

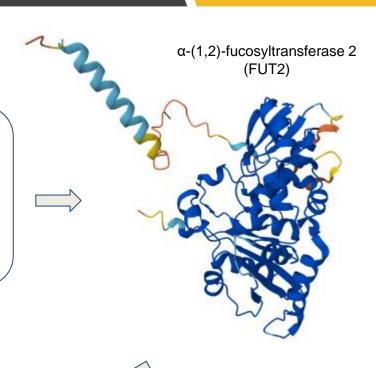

- Frequently repetitive epitopes
 - Ongoing glycosylation
- Direct B-cell stimulation
 - Ongoing antibody production
 - "Naturally" occuring antibodies
 - Tends to be IgM
- Strong Agglutination at Room Temperature
 - Complement binding and in-vitro hemolysis
- Cold affinity (<<37 degrees Celsius)
 - Uncommonly in vivo hemolysis
 - Exception ABO antibodies

Expression of ABO Antigens


Controlled by 3 genes:

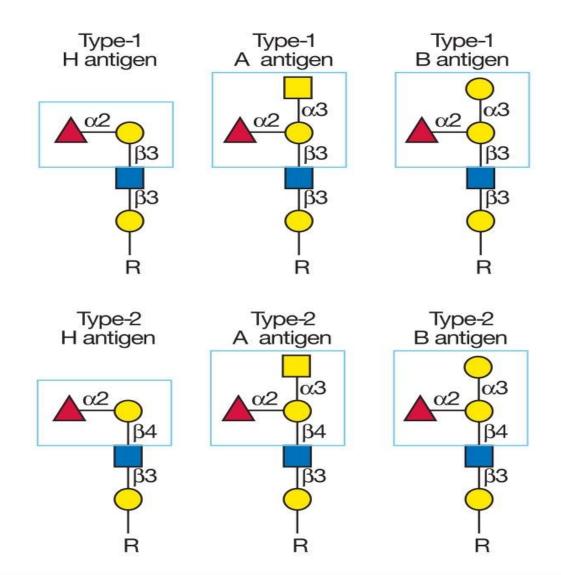


Catalytic Action



beta-D-galactosyl-(1->3)-N-acetyl- beta-D-glucosaminyl-R

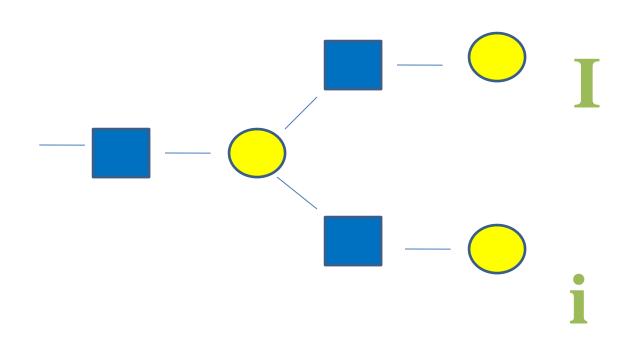
alpha-L-fucosyl-(1->2)-beta-Dgalactosyl-(1->3)-N-acetyl-beta-Dglucosaminyl-R



Jumper, J., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2

Varadi, M., et al. (2024). AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research. https://doi.org/10.1093/nar/gkad112

AlphaFold. (n.d.). AlphaFold entry: Q10981. AlphaFold Protein Structure Database. Retrieved from https://alphafold.ebi.ac.uk/entry/Q10981


Working Inside Out

I and i antigens

- Precursor substance for H, A, & B
- "Maturation" from little i to big I
 - Adults still have some little i on the RBC below clinical detection limits
 - Relates to marrow transit time reticulocytes have the most

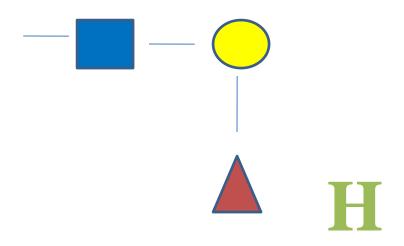
I and i antigens

□ galactose
 □ N-acetylglucosamine
 □ N-acetylgalactosamine

fucose

Anti-I/anti-i

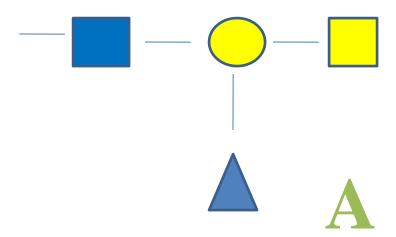
- Auto-anti-I at subclinical levels in many people
- Nuisance antibody at ABO testing
- Cold autoimmune hemolytic anemia
 - Anti-I Mycoplasma pneumoniae (big people)
 - Anti-i EBV (infectious mononucleosis little people)
 - Wide thermal amplitude
 - If you can detect it at 37, it can hemolyze cells
 - Works best at 4 degrees Celsius
 - Cold agglutinin panel will test adult cells (I) and cord cells
 (i) for specificity


H substance

- (α1-2) fucosyltransferase on 19q13.3 (FUT1)
 - Connects a fucose to the terminal galactose of the I/i chain
 - Fucose moiety is required to build A & B antigen
 - Group O individuals have only H substance as the predominant antigenic oligosaccharide

H substance

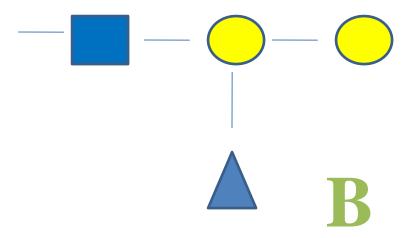
Anti-H

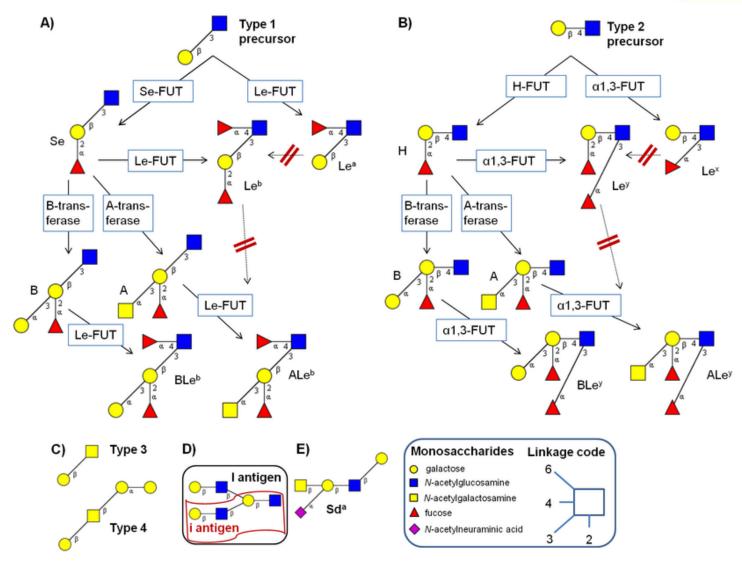

- Individuals without FUT1 (hh) produce a strong anti-H which will hemolyze >99% transfused cells (Bombay/O_h)
- FUT2 will produce H, A and B on secretions, so can adsorb to RBCs resulting in Weak A or B phenotype
- Anti-A or anti-B on eluate

ABO

- H substance glycosylated to form the A or B antigen
 - Requires fucose
 - A and B genes on chromosome 9 code for glycosyltransferases
 - Only differ by four nucleotide residues resulting in four different amino acids
 - No transfer of antigenic sugar type O
 - Most common is an amorph premature stop codon due to deletion at nucleotide 261 (AA117)
 - Approximately 50 other identified "O" alleles

A substance


Addition of N-acetylgalactosamine


B substance

Addition of Galactose

Full Pathway

Dotz, Viktoria & Wuhrer, Manfred. (2015). Histo-blood group glycans in the context of personalized medicine. Biochimica et Biophysica Acta (BBA) - General Subjects. 1860. 10.1016/j.bbagen.2015.12.026.

ABO

Co-dominant in phenotype

A (O A) x B (O B)

O (O O) A (A O) B (O B) AB (A B)

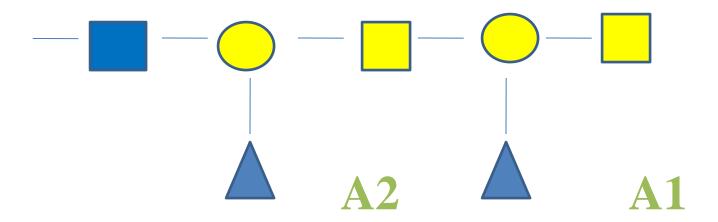
A and B genes are co-dominant allelesO gene is recessive

ABO

- Although it is considered an RBC antigen, it is not specific
 - Platelets, intestinal cells, vascular endothelium, soluble in secretions and excretions (saliva, milk, urine)
 - Transfusion of ABO incompatible platelets results in approx. 75% of expected recovery at one hour

Anti-ABO antibodies

- "Naturally-occurring"
 - Similarities between bacterial antigens and A/B
- By six months will invariably have antibodies against non-self antigens
 - Peak around age 5-10
 - Wane in elderly may become clinically undetectable
 - Predominantly IgM
 - Anti-A,B made by Group O individuals is IgG
 - Can pass through placenta and cause HDFN


A and B subgroups

80% of type A individuals have an enzyme with strong activity (A1)

Complex oligosaccharides with internal A epitopes 20% have weaker enzymes (predominantly A2) that can recognize the structure of 'A1" as foreign A₃ will produce mixed field reaction (A and O) A_x will have weak/absent reactivity with anti-A and frequently a weak anti-A1 (funny O) B antigenic subgroups are similar

A2 and A1

Addition of N-acetylgalactosamine

Anti-A1

- Unexplained reactivity with A1 cells in a type A patient
 - Typing discrepancies
 - 1-2% of A2
 - 25% of A2B

 Resolved with an anti-A1 lectin from Dolichos biflorus (horse gram)

Acquired "B" antigen

Gut bacteria have a deacetylase enzyme, which, if bacteremic, can convert N-acetylgalactosamine to galactosamine which has sufficient antigenity to bind anti-B in blood typing

Weak B on forward typing

Anti-B on reverse typing

Cis-AB

- Weak A and B activity inherited together from one parent
- Mostly AB on front type, although A and B have been reported and later confirmed genetically
- ?? Production of anti-A1

Considerations

- Hypogammaglobulinemia (elderly, hematopoietic malignancies resulting in poor antibody production and non-reactivity on reverse typing
 - Bacterial Infection??
- Autoantibodies interfering with hemagglutinins
 - Very weak
- Intestinal/Pancreatic/Biliary/Ovarian malignancies with excretion of soluble A/B antigen which binds up hemagglutinins

Workup

- Quantitative Immunoglobulins were elevated or within normal levels (no hypogammaglobulinemia)
- One allele positive for RAG1 gene associated with autosomal recessive severe combined immunodeficiency (SCID)
 - Could it be that the other allele is not detected by this assay?
 - 71 different variants identified, but only 10% pathogenic
 - Parents did not want further expensive testing

Conclusions

- Uncertain
 - If SCID, why adequate immunoglobulins?
 - Discharged on long term antibiotics to be seen at outside provider

Any Questions?